Cutting nitrogen leaching in greenhouse soil by water-nitrogen partially decoupled drip fertigation
Jing He,
Mingfen Niu,
Jian Ma,
Zhi Quan,
Guangyu Chi,
Caiyan Lu and
Bin Huang
Agricultural Water Management, 2025, vol. 311, issue C
Abstract:
It is challenging by popular water-nitrogen coupled drip fertigation (CF) to control dissolved nitrogen (DN) leaching in greenhouse soils planted with cucumber-represented vegetables that often need sufficient and frequent irrigation to ensure yields. This study proposed water-nitrogen partially decoupled drip fertigation (DF) as a substitute for CF to cut DN leaching from cucumber-planted greenhouse soil without cutting water and N input. DF performance in comparison with CF in soil DN leaching control was evaluated both theoretically based on presumed criteria and experimentally in a greenhouse loam soil without and with cucumbers. DF had a good potential in reducing DN leaching under moderate water leaching (15 %-25 %) when the ratio of irrigation and the ratio of N fertilization in water-more-dissolved nitrogen-less (WM) and water-less-dissolved nitrogen-more (WL) subzone soil specially formed under DF were respectively set at 2.0–3.0 and 0.6–0.8. Experimental results showed that the reduction effect of DF was limited on water leaching (<10 %) but significant on DN leaching, especially with cucumbers. The cumulative leaching loss of DN dominated by nitrate N (>75 %) from seven leaching events during the water demand-high fruiting period under moderate water leaching (averagely around 15 %) was 41.7 % lower (p < 0.05) under DF than under CF, predominantly (78.3 %) via lowering its availability in leachate. Moreover, DF increased the cucumber yield somewhat with retention of significantly more nitrate N mainly in WL subzone soil. The presence of cucumber improved DF performance mainly by absorbing more water from WM subzone soil than from WL subzone soil to weaken lateral diffusion of water and nitrate-dominated DN between WM and WL subzone soil, lowering DN level in leachate mainly derived from WM subzone soil while enhancing its level mainly in WL subzone soil. Hence, DF may replace CF to cut N leaching without cutting irrigation in greenhouse soils cultivated with cucumber-represented vegetables needing sufficient and frequent irrigation.
Keywords: Dissolved nitrogen; Irrigation; Lateral diffusion; Nitrate retention; Subzone soil (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000964
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000964
DOI: 10.1016/j.agwat.2025.109382
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().