EconPapers    
Economics at your fingertips  
 

From weather data to water fluxes simulation in Mediterranean greenhouses through a combined climate and hydrological modelling approach

D. la Cecilia, A. Venezia, D. Massa and M. Camporese

Agricultural Water Management, 2025, vol. 311, issue C

Abstract: In the Mediterranean basin, agricultural land covered by greenhouses has been surging in the recent decades. The main goal of this study is to provide estimates of water demand and fluxes in Mediterranean greenhouses starting from outdoor weather data. This is achieved by developing a novel agricultural water modelling framework that combines a greenhouse climate model with a Richards equation-based hydrological model. We improve and evaluate an existing greenhouse climate model with greenhouse data from an experiment using rocket (Diplotaxis tenuifolia) as the candidate crop in South Italy for its market importance. The first major improvement regards the iterative estimation of the potential crop evapotranspiration using the FAO56 Penman Monteith method, adapted for greenhouse conditions, at the hourly scale, rather than a locally calibrated formula. The second one concerns the full coupling between the heat balance equations of the air and the soil compartments. The greenhouse climate model was able to simulate with satisfying accuracy the measured indoor air temperature (r2=0.58 and KGE=0.76) and relative humidity (r2=0.47 and KGE=0.67). Importantly, the crop potential evapotranspiration estimated from climate data either measured indoor or simulated with the greenhouse model were identical. Next, the hydrological model CATchment HYdrology (CATHY) was evaluated in the same experimental setting but different period (rocket in autumn and spring growing conditions), under sprinkler and subsurface drip irrigation. The CATHY model, fed with irrigation data and crop potential evapotranspiration estimated from measured indoor climate, reproduced well the measured soil water content dynamics at five depths (10, 20, 30, 40, 50 cm), despite some bias due to the lack of soil-specific sensor calibration. While the proposed modelling framework is currently coupled in a one-way manner, it has the potential to unlock valuable knowledge for the enhancement of our understanding of greenhouse farming implications on water management at plot and larger scales.

Keywords: Protected agriculture; Plastic greenhouse; Diplotaxis tenuifolia; Irrigation management (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001003
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001003

DOI: 10.1016/j.agwat.2025.109386

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-25
Handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001003