Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management
Weiguang Zhai,
Qian Cheng,
Fuyi Duan,
Xiuqiao Huang and
Zhen Chen
Agricultural Water Management, 2025, vol. 311, issue C
Abstract:
Winter wheat is one of the world’s most important food crops, and effective water and fertilizer management is crucial for optimizing its yield and water-fertilizer use efficiency. Unmanned aerial vehicle remote sensing provides a reliable tool for accurately monitoring winter wheat growth and dynamically adjusting water and fertilizer strategies to enhance yield. In this study, a water and fertilizer experiment was conducted in Xinxiang County, Henan Province, a region with a warm temperate continental monsoon climate, characterized by hot, humid summers and cold, dry winters. Various water (W1: 0 mm, W2: 50 mm, W3: 100 mm, W4: 150 mm) and nitrogen (N1: 0 kg/ha, N2: 90 kg/ha, N3: 210 kg/ha, N4: 330 kg/ha) treatments were applied. Subsequently, the effects of different water and fertilizer treatments on winter wheat yield and water-fertilizer use efficiency were evaluated, and the response patterns between winter wheat spectral features (normalized difference vegetation index, NDVI) and texture features (Contrast) and yield and water-fertilizer use efficiency were analyzed. The main findings are: (1) Winter wheat yield increased with higher irrigation and nitrogen levels but plateaued when irrigation reached 120 mm and nitrogen application was 225 kg/ha, beyond which further increases showed no significant improvement; (2) Water-fertilizer use efficiency decreased with increasing irrigation and nitrogen levels but improved with synergistic water-fertilizer interactions. The N3W3 treatment achieved high yield while maintaining superior water-fertilizer use efficiency (irrigation water use efficiency: 1.28 kg/m³, agronomic nitrogen efficiency: 13.33 kg/kg, and fertilizer benefit: 5961.30 RMB/ha), making it the most effective management strategy; (3) NDVI exhibited saturation under high-density conditions, limiting its sensitivity to subtle differences in winter wheat. Conversely, Contrast provided complementary insights into canopy structure, revealing variations in uniformity and resource efficiency under excessive water and nitrogen inputs. Integrating NDVI with Contrast enabled a more accurate assessment of yield and water-fertilizer use efficiency, offering actionable insights for optimizing water-fertilizer management strategies.
Keywords: Winter wheat; Water-fertilizer use efficiency; Remote sensing; Spectral features; Texture features (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001040
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001040
DOI: 10.1016/j.agwat.2025.109390
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().