Optimized fertilizer management strategy based on ridge–furrow planting pattern enhances dryland wheat yield and water utilization on the Loess Plateau
Jun Xing,
Guojun Liu,
Wenbo Zhai,
Tong Gou,
Zuoyan Zhou,
Ai Hu,
Kai Zhang,
Dong Bai,
Aixia Ren,
Zhiqiang Gao and
Min Sun
Agricultural Water Management, 2025, vol. 311, issue C
Abstract:
Rain-fed agroecosystems require integrated strategies to synchronize water and nitrogen use for sustainable production. To investigate the mechanisms by which ridge–furrow planting (RP), coupled with optimal N rate (90, 135, 180 kg N ha⁻¹), enhances soil water utilization, yield formation, and water productivity (WP) in dryland wheat systems, a three-year split-plot field experiment (2018–2021) was designed to compare RP against flat planting (FP) under semi-arid rainfall variability. Results showed that RP improved rainwater infiltration into deeper soil layers, increasing soil water storage by 4.3–8.0 % at jointing and elevating soil water use rate by prioritizing deep-layer extraction during critical growth stages. RP combined with optimized N rates achieved the highest grain yield (25.9 %, 15.3 %, and 10.8 % increases in dry, normal, and wet years) and WP by harmonizing water-N synergies. Enhanced post-anthesis water extraction from 160–200 cm layers under RP significantly boosted dry matter accumulation. Correlation analyses revealed that spike number in dry years correlated with pre-anthesis water use in the 80–160 cm layer (P < 0.01), kernels per spike in normal years aligned with balanced pre-/post-anthesis allocation across 0–200 cm (P < 0.05), and 1000-grain weight in wet years depended on post-anthesis extraction from 160–200 cm (P < 0.01), synergistically driving yield gains. RP integrated with adaptive nitrogen thresholds (90–180 kg ha⁻¹) is recommended to stabilize yields and maximize WP in rain-fed systems. This strategy provides a scalable pathway to strengthen climate resilience and sustainable resource utilization in water-limited agroecosystems.
Keywords: Ridge–furrow; Nitrogen application rate; Yield; Yield components; Water utilization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001052
DOI: 10.1016/j.agwat.2025.109391
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().