Synthesizing regional irrigation data using machine learning – Towards global upscaling via metamodeling
Søren Julsgaard Kragh,
Raphael Schneider,
Rasmus Fensholt,
Simon Stisen and
Julian Koch
Agricultural Water Management, 2025, vol. 311, issue C
Abstract:
Knowledge on irrigation is key to sustainable water resource management, but spatio-temporal irrigation data are rarely available. Recent advances are based upon satellite remote sensing data to quantify irrigation at high spatial resolution, and this study utilizes published irrigation datasets at regional scale to develop a metamodel approach to synthesize the available irrigation knowledge. We investigate the potentials and limitations of a Random Forest-based metamodeling approach that predicts irrigation at monthly timescale using only globally available and easily accessible features related to hydroclimatic and vegetation variables. The training dataset consists of three irrigation water use datasets derived from the soil moisture-based inversion framework and covers a variety of climatic conditions and irrigation practices in Spain, Italy, and Australia. Further, the study includes irrigation predictions from three test sites representing major global hot spots for unsustainable irrigation management: the North China Plain, Indus, and Ganges Basins. Our study aims to test the model transferability in space and time based on a series of split-sample experiments. We quantify and outline model transferability based on the area of applicability analysis, showing that although the feature space was mostly well represented, the magnitude of the target variable was equally important for assessing model transferability. A comprehensive feature importance analysis reveals that ranking of the most important input features depends on geographical extent of the training dataset. We find that model transferability was more robust across space than time within the small study areas, mainly because of the small geographical extents of the training datasets. The developed metamodel demonstrates satisfying performance on irrigation water use with mean error of 3 mm/month (10% bias) for a successful model transferability outside the training study areas. The spatial pattern performance of irrigation was lower but spatial patterns of irrigation were nevertheless closely linked to climate and remote sensing features. Given the increase in published regional irrigation datasets, we see great potential for further developing metamodel approaches for synthesizing existing knowledge and work towards global upscaling opportunities.
Keywords: Irrigation estimates; Random forest; Model transferability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001180
DOI: 10.1016/j.agwat.2025.109404
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().