EconPapers    
Economics at your fingertips  
 

Improving synergy of the water-agriculture-ecology system in arid areas using a novel co-optimization model

Xingyu Zhu, Xiaoling Su, Vijay P. Singh, Haijiang Wu, Jiping Niu, Lianzhou Wu and Jiangdong Chu

Agricultural Water Management, 2025, vol. 312, issue C

Abstract: In arid areas, the intricate interconnections and competition among water, agriculture, and ecology are particularly pronounced. Enhancing the synergy within the water-agriculture-ecology (WAE) system, while seeking common ground of competing sectors, presents a formidable challenge in managing water and land resources. In this study, the synergy of the WAE system was assessed using a coordinated development degree function, which was developed by considering the coefficient of variation and spatial distance projection. We investigated the multi-factor dynamic regulation of the WAE system through a water-agriculture-ecology co-optimization (WAECO) modelling framework, which adheres to a regulatory model that follows global-to-local optimization and bottom-up feedback. Using this framework, key factors, such as reservoir water supply, groundwater exploitation, and planting structure in the Shiyang River Basin (SRB), a typical arid basin in northwest China, were regulated. Results indicated crop yields and economic benefits in the baseline year reflected increments of 1.2 % and 5.4 %, respectively, compared to the actual scenario, while simultaneously increasing ecological water satisfaction by 11.1 % post-co-optimization. Through bilateral regulations between supply and demand, the annual average water deficit of the WAE system notably decreased from 7.5 % to 3.4 % in the mixed irrigation area of Liuhe midstream. The WAECO model effectively reconciled competing sectoral interests and improved the synergy of the WAE system, as indicated by a 6.3 % improvement in the coordinated development degree over the static regulation model. The new framework integrates a broad spectrum of regulatory factors and provides decision-makers with thorough and practical information, thereby facilitating the integrated management of the WAE system in arid areas.

Keywords: Water-agriculture-ecology system; Multi-factor synergy; Co-optimization; Dynamic regulation; Shiyang River Basin (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001222
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001222

DOI: 10.1016/j.agwat.2025.109408

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001222