EconPapers    
Economics at your fingertips  
 

Quantifying future climate impacts on maize productivity under different irrigation management strategies: A high-resolution spatial analysis in the U.S. Great Plains

Ikenna Onyekwelu, Sam Zipper, Stephen Welch and Vaishali Sharda

Agricultural Water Management, 2025, vol. 313, issue C

Abstract: Producers east of the 100th meridian, a historically wetter portion of the Great Plains, face uncertainties regarding yield, irrigation water use, water productivity, and net returns due to the impacts of climate change in the region. These climate change impacts are spatially variable with a heterogeneous response to environmental variability and different water management techniques. Therefore, the present study addresses climate change impacts on irrigated maize productivity in the Eastern Kansas River Basin of the Great Plains at a fine spatial scale using Shawnee County, Kansas as a case study. We incorporated spatially variable soils and grid-level historical and future climate scenarios under different irrigation management strategies as inputs to CERES-Maize crop model. Our model validations closely matched observed yield and irrigation water use, with index of agreement values exceeding 0.85. Future climate projections (RCPs 4.5 and 8.5) were analyzed across three 25-year periods (2025–2049, 2050–2074, and 2075–2099) relative to historical conditions (1991–2015). Results showed yield declines of 21–38 % and 22–70 % (RCPs 4.5 and 8.5, respectively) due to shortened growing season length. Irrigation water use under full allocation increased by 9–23 %, while net returns declined significantly, resulting in significant decline in water productivity. We found that deficit irrigation strategies saved 3–15 % of water without further diminishing maize productivity. These findings highlight the importance of fine scale climate impact analysis of crop productivity. Future maize production in the region necessitates integrating yield-advancing cultivars with improved water management found in this study in order to meet the expected grain demand over the next decades.

Keywords: Maize yield; Future climate; Irrigation; Spatial crop model; CERES-Maize model; Net returns; Water productivity; Great Plains (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425002045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425002045

DOI: 10.1016/j.agwat.2025.109490

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425002045