EconPapers    
Economics at your fingertips  
 

A path towards precision border irrigation combining hydrodynamic modelling and in-field sensor-based support

Paul Vandôme, Gilles Belaud, Mohamed Amine Berkaoui, Cédric Guillemin, François Charron and Crystèle Leauthaud

Agricultural Water Management, 2025, vol. 316, issue C

Abstract: Surface irrigation is often described as low performing insofar as its practice is labour intensive and involves the use of large water flows that are difficult to quantify and manage. However, this method remains predominant worldwide, and modernisation towards localised irrigation systems is not always feasible nor advisable. To support border irrigation management, we previously developed a low-cost sensor for surface irrigation management, which remotely informs the farmer of water arrival downstream of his field and therefore of the moment to stop irrigation. The objectives of this article were: (i) to determine the optimal position of this sensor lengthwise in the field throughout the season, and (ii) to compare the influence of management scenarios (current farmer’s practices, sensor-based and time-based cutoff) on irrigation performance. To this end, an integrated agro-hydraulic model was developed to simulate surface water flow dynamics throughout the season including variations in infiltration and roughness. The model was run using monitoring data from the border irrigation of a hay field during a whole season in Southern France. The results showed that the optimal sensor position can change significantly over the course of the season, depending on inflow rates, initial soil moisture and Manning’s roughness. Sensor-based irrigation control was found to be more efficient than current farming practices, with an estimated water-saving potential of 33%, and more effective than an optimised fixed cutoff time in limiting water losses induced by variability or uncertainty in the initial conditions. For some irrigation events, water savings could reach 50%. The methods and findings should serve as a basis for larger-scale studies integrating the adoption of sensors and real-time data for surface irrigation management.

Keywords: Border irrigation; IoT-based water management; Surface irrigation model; Precision irrigation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742500232X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:316:y:2025:i:c:s037837742500232x

DOI: 10.1016/j.agwat.2025.109518

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-01
Handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s037837742500232x