EconPapers    
Economics at your fingertips  
 

A process-based modelling of groundwater recharge under contrasting irrigation methods in semi-arid crops

Taha Attou, Sylvain Kuppel, Mohamed Hakim Kharrou, Jamal Ezzahar, Lhoussaine Bouchaou, Yassine Ait Brahim, Valérie Demarez and Abdelghani Chehbouni

Agricultural Water Management, 2025, vol. 316, issue C

Abstract: We present an application of the process-based ecohydrological model EcH2O to evaluate water-energy coupling and resulting percolation beneath the root zone under contrasting irrigation practices in a semi-arid region. The study uses high-resolution data from two wheat fields employing flood and drip irrigation, in a multi-objective calibration and evaluation approach with datasets encompassing soil water content at two depth ranges, energy balance components, and percolation rates at two depths. We find that the model reasonably simulates water fluxes and energy partitioning, and captures the distinct hydrological responses of the different irrigation methods. The best overall performances were found at both sites using calibration scenarios combining all available datasets, pointing at complementary information footprints. These footprints were nonetheless heteregeneous, as for example simulation of energy balance components showed little change between calibration scenarios, while percolation fluxes were acceptably captured only if the corresponding datasets were included in the calibration. Results highlight larger percolation dynamics and amounts beneath the root zone of flood-irrigated wheat, yet the two indices used here for irrigation efficiency reveal opposite rankings between the two irrigation methods depending on whether deep percolation is included (as a proxy for aquifer recharge) or not in the hydrological system being analysed. These findings challenge the view on greater water-saving benefits associated with drip irrigation, given the complex trade-offs between irrigation amounts and timing, plant water use, and return flows (e.g. underlying aquifer recharge). This analysis is a step forward for informing integrative and sustainable water management strategies in arid and semi-arid agricultural contexts.

Keywords: Irrigation efficiency; Groundwater recharge; Ecohydrological modelling; Multi-objective calibration; EcH2O (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425002987
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002987

DOI: 10.1016/j.agwat.2025.109584

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-01
Handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002987