Effects of treated wastewater irrigation on soil properties, nutrient uptakes, and crop yields of agronomic crops under different crop rotations
Mohammad Saleh,
Mobin Salehi,
Shayan Khanaki,
Hamed Ebrahimian,
Abdolmajid Liaghat,
Seyed Majid Mousavi,
Salar Pashapour and
Ali Ashrafi
Agricultural Water Management, 2025, vol. 316, issue C
Abstract:
The global agricultural sector, as the largest consumer of water, faces critical challenges related to freshwater scarcity and quality. Treated wastewater (TWW) irrigation presents a viable solution, prompting this study to examine its effects on soil and crops over a two-year experiment (2020–2021) in Hashtgerd and Mahdasht, Karaj, Iran, across different growing seasons. Wheat, barley, alfalfa, and maize were cultivated in two farms per region. Findings revealed significant impacts on electrical conductivity (EC), nutrient levels (nitrogen and phosphorus), and heavy metal dynamics, varying based on TWW quality and soil properties. Notably, soil EC increased by 1.08 and 1.38 dS/m in Hashtgerd farms, while Mahdasht saw rises of 3.36 and 3.20 dS/m, reflecting regional disparities in TWW composition. Nitrate concentrations in Mahdasht increased by up to 25 mg/kg compared to baseline levels, while lead accumulation remained below critical thresholds in both regions. These region-specific values reflect local variations in water quality and soil characteristics, contributing to a broader understanding of spatial differences in TWW irrigation outcomes. While TWW enriched the soil with nutrients like nitrogen and phosphorus, it also posed risks such as salinization, nitrate leaching, and heavy metal accumulation, especially in Mahdasht, where wastewater quality is lower. Crop productivity improved for maize and barley under TWW irrigation, but wheat and alfalfa showed inconsistent outcomes, including occasional yield declines and nutrient imbalances. Although heavy metals in crops remained mostly within safe limits, nickel and lead exhibited worrisome trends. These findings emphasize the dual role of TWW in improving soil fertility and crop productivity while presenting environmental and health challenges.
Keywords: Wastewater; Irrigation; Nitrogen; Phosphorus; Heavy metals; Salinity; Plant uptake (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425002999
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002999
DOI: 10.1016/j.agwat.2025.109585
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().