Representation of rainfed valley ricefields using a soil-water balance model
C. Shanthi de Silva and
K.R. Rushton
Agricultural Water Management, 2008, vol. 95, issue 3, 271-282
Abstract:
Soil-water conditions for ricefields located in valleys in micro-catchments are simulated using a daily soil-water balance model. The crop is primarily rainfed but there is also limited irrigation water. The simulation covers a complete year and includes features such as rainfall, irrigation releases, runoff from uplands, actual evaporation and evapotranspiration, percolation losses through the bed and bunds of the ricefield, standing water in the field and overflows from the ricefield. A specific location in Sri Lanka is selected to illustrate the approach. The impacts of different conditions are explored including alternative irrigation releases, increased losses through the bed and bunds of the ricefield and a lower overflow from the ricefield. Simulations indicate that ricefields which are towards the valley sides have an increased inflow due to runoff from adjacent uplands; this can lead to improved rice yields. However, reducing heights of the bunds to half the original value results in substantial overflows during periods of high rainfall while the number of days without submergence almost doubles. This uncomplicated model is consistent with the limited field data and information available; it provides a realistic representation of the important processes and indicates why poor crop yields often occur.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00268-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:95:y:2008:i:3:p:271-282
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().