Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)
M. Kundu,
P.K. Chakraborty,
A. Mukherjee and
S. Sarkar
Agricultural Water Management, 2008, vol. 95, issue 4, 383-390
Abstract:
The hypothesis was tested, whether soil wetness and phosphorus status could regulate the evapotranspiration rate (ETR), which is of special interest in the lower Gangetic Plain. Rajmash was grown during November-February of 2003-2004 and 2004-2005 on a sandy loam soil, and was irrigated when cumulative pan evaporation (CPE) attained the value of 33 mm (CPE33); 44 mm (CPE44) and 66 mm (CPE66). Four levels of phosphate application were 0 kg P2O5 ha-1 (P0); 30 kg P2O5 ha-1 (P30); 60 kg P2O5 ha-1 (P60) and 90 kg P2O5 ha-1 (P90). Seed yield under CPE33 was 1.37 mg ha-1 and reduced by 18% and 35%, respectively under CPE44 and CPE66. Continuous increasing trend in yield was recorded with an increase in phosphate level (PL). Irrespective of growth stages, similar trends were recorded for leaf area index (LAI). Maximum variation in LAI among the treatments was recorded at 60 days after sowing. On average, actual ETR was 1.37 mm day-1 under CPE33 and declined by 13% and 16% under CPE44 and CPE66, respectively. Variation in ETR under different PL was highest under CPE33 and lowest under CPE44. Except P90, irrespective of PL, highest value of water use efficiency (WUE) was obtained under CPE44. However, magnitude of net evapotranspiration efficiency (WUEET) and irrigation efficiency (WUEI) attained the highest level under CPE33 regime. All water use indices showed an increasing trend with the increase in phosphate level from 0 to 90 kg ha-1. Impact of phosphorus on various parameters was pronounced under CPE33.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00287-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:95:y:2008:i:4:p:383-390
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().