Soil water movement under a single surface trickle source
P.R. Bhatnagar and
H.S. Chauhan
Agricultural Water Management, 2008, vol. 95, issue 7, 799-808
Abstract:
Under a trickle source, the flow of water in unsaturated soil takes place from a disc source having a radius changing with time due to change in the rate of infiltration. To predict the wetting pattern below an emitter placed on the soil surface, an unsteady, non-linearised numerical model has been developed in an oblate spheroidal coordinate system. Using this coordinate system, the problem involving disc source geometry having radius changing with time, is simplified, as the disc is a degenerate case of an oblate spheroid. The results of the proposed model are in close agreement with the experimental results of [Taghavi, S.A., Marino, M.A., Rolston, E., 1984. Infiltration from a trickle irrigation source. J. Irrig. Drain. Eng. ASCE 110 (4), 331-341] and the numerical model of [Bresler, E., 1978. Analysis of trickle irrigation with application to design problems. Irrig. Sci. 1, 3-17] developed in cylindrical coordinates. The applicability of the model has been analysed for special conditions of trickle irrigation e.g. large time water application, redistribution of soil water after discharge is cut off or reduced, and basin irrigation with restriction of surface water flow.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00049-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:95:y:2008:i:7:p:799-808
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().