A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area
Z.Y. Shen,
Y.W. Gong,
Y.H. Li,
Q. Hong,
L. Xu and
R.M. Liu
Agricultural Water Management, 2009, vol. 96, issue 10, 1435-1442
Abstract:
Soil and water conservation is important for the Three Gorges Reservoir Area in China, and quantification of soil loss is a significant issue. In this study, two widely used models - the Water Erosion Prediction Project (WEPP) and the Soil and Water Assessment Tool (SWAT) - were applied to simulate runoff and sediment yield for the Zhangjiachong Watershed in the Three Gorges Reservoir Area. The models were run and the simulated runoff and sediment yield values were compared with the measured runoff and sediment yield values. In the calibration period, the model efficiency (ENS) values for the WEPP and SWAT were 0.864 and 0.711 for runoff, and 0.847 and 0.678 for sediment yield, respectively. In the validation period, the ENS values for WEPP and SWAT were 0.835 and 0.690 for runoff, and 0.828 and 0.818 for sediment yield, respectively. The results of ENS and the other criteria indicate that the results of both models were acceptable. WEPP simulations were better than SWAT in most cases, and could be used with a reasonable confidence for soil loss quantification in the Zhangjiachong Watershed.
Keywords: Sediment; yield; Runoff; MUSLE; Sensitivity; analysis; Calibration; Validation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00132-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:10:p:1435-1442
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().