Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation
S. Elmaloglou and
E. Diamantopoulos
Agricultural Water Management, 2009, vol. 96, issue 3, 533-538
Abstract:
The infiltration and redistribution of soil moisture under surface drip irrigation considering hysteresis were investigated in two soils (loamy sand and silt loam) of different texture. The effect of continuous versus intermittent application of 1, 2 and 4 l/h to the soils was evaluated in terms of wetting front advance patterns and deep percolation under the root zone. For this purpose, a cylindrical flow model incorporating hysteresis in the soil water retention characteristic curve, evaporation from the soil surface, and water extraction by roots was used. The results show that, compared with continuous irrigation, pulse irrigation slightly reduces the water losses under the root zone in both cases (with and without hysteresis). Also, at the total simulation time, in both types of irrigation, hysteresis reduces significantly the water losses under the root zone. Finally, the effect of hysteresis was found to be greater at higher discharge rate (4 l/h) and consequently at higher water content at the soil surface.
Keywords: Mathematical; modelling; Trickle; irrigation; duration; Total; simulation; time; Deep; percolation; Evaporation; Hysteresis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00205-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:3:p:533-538
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().