EconPapers    
Economics at your fingertips  
 

Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent

Haijun Liu and Guanhua Huang

Agricultural Water Management, 2009, vol. 96, issue 5, 745-756

Abstract: A laboratory experiment was carried out to study the emitter performance of three commonly used emitter types with the application of freshwater and treated sewage effluent (TSE). The three emitter types are the inline-labyrinth types of emitters with a turbulent flow (E1) and a laminar flow (E2) and the online pressure-compensation type of emitters (E3). The qualities of freshwater and TSE were measured, and the emitter performance was evaluated, using the relative emitter discharge, the reduction of emitter discharge (qreduction), the coefficient of variation of emitter discharge (CV), the emission uniformity (EU), Christiansen uniformity coefficient (CU), and the percentage of emitter clogging (Pclog). Results showed that all indices were affected by water quality, emitter type and time of operation. The values of qreduction, CV and Pclog for the TSE treatments were greater than those for the freshwater treatments. The values of EU and CU for the TSE treatment were lower than those for the freshwater treatments. The qreduction, CV and Pclog increased and the EU and CU decreased as operational time increasing for the TSE treatment. For both freshwater and TSE treatments, the emitter clogging was more severe, the CV was greater, and the EU and CU were smaller for emitter type E2 than those for emitter types E1 and E3. Thus a more severe clogging was found for emitter type E2 due to its smaller flow-path dimension and higher manufacturing coefficient of variation in addition to the high pH values and relatively high total dissolved solids (TDS) values of the used water. Analyses of water quality and the precipitation components inside and at the outlet of emitters revealed that chemical precipitation was the main reason for emitter clogging due to high pH and ions' concentration, especially in the TSE. Flushing emitters and drip pipes did not efficiently alleviate emitter clogging caused by chemical precipitation. In a conclusion, emitter type E3 showed a better anti-clogging function than emitter types E1 and E2 and was recommended for irrigation with TSE in the Beijing area of China.

Keywords: Drip; irrigation; Discharge; Emitter; clogging; Freshwater; Treated; sewage; effluent; Water; quality (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00279-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:5:p:745-756

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:745-756