Interaction of water and nitrogen on maize grown for silage
Mahdi Gheysari,
Seyed Majid Mirlatifi,
Mohammad Bannayan,
Mehdi Homaee and
Gerrit Hoogenboom
Agricultural Water Management, 2009, vol. 96, issue 5, 809-821
Abstract:
Water scarcity and environmental pollution due to excessive nitrogen (N) applications are important environmental concerns. The Varamin region, which is located in the central part of Iran, is one of the locations where farmers apply 250-350kgNha-1 for silage maize without any concerns with respect to the available water for irrigation. The objective of this study was to quantify the response of the silage maize (Zea mays L.) to variable irrigation and N fertilizer applications under arid and semi-arid conditions and to determine the optimum amount of N fertilizer as a function of irrigation. The maize Hybrid 704 single-cross was planted on 3 August 2003 and on 25 June 2004. The experimental treatments consisted of three N rates (0, 150, and 200kgNha-1) and four levels of irrigation, including two deficit irrigation levels 0.70 SWD (soil water depletion) and 0.85 SWD, a full-irrigation level (1.0 SWD) and an over-irrigation level (1.13 SWD). Twelve treatments were arranged in a strip-plot design in a randomized complete block with three replicates. Gravimetric soil samples were collected in 2003 and a neutron probe was used in 2004 to measure soil water content. Leaf area index, total aboveground biomass (TB), plant height, stem diameter, and leaf, stem, and ear dry weight were measured during the growing seasons and at final harvest. Total aboveground biomass was affected by irrigation (P 0.5). Total aboveground biomass and biomass of the crop components increased as a function of the amount of water and N applied. For each of the irrigation levels, there was an associated optimum amount of N, which increased as the amount of irrigation water that was applied increased. Among the four irrigation levels that were studied, 0.85 SWD was the optimum level of irrigation for the conditions at the experimental site. The results also indicated that an increase in N applications is not a good strategy to compensate for a decrease of TB under drought stress conditions. We concluded that the effect of N fertilizer on TB depends on the availability of water in the soil, and that the amount of N fertilizer applied should be decreased under drought stress conditions. Further research will combine these results with a crop simulation model to help optimize nitrogen and water management for silage maize.
Keywords: Deficit; irrigation; Water; stress; Sprinkler; irrigation; Water; and; nitrogen; interaction (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00300-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:5:p:809-821
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().