Nitrate-N loadings through subsurface environment to agricultural drainage ditches in two flat Midwestern (USA) watersheds
D. Goswami,
P.K. Kalita,
R.A.C. Cooke and
G.F. McIsaac
Agricultural Water Management, 2009, vol. 96, issue 6, 1021-1030
Abstract:
A study was conducted to understand the contributions of tile flow and baseflow to total nitrate-N (NO3-N) loadings in two subsurface (tile)-drained watersheds, namely the Big Ditch (BD) and the Upper Embarras River (UER) watersheds in Illinois. Two stream sections were selected in the watersheds and rectangular cutthroat flumes were installed at the upstream and downstream ends of the stream sections to calculate the flow mass balance for separating baseflow. The stream section at BD site had two tile outlets draining into it. The stream section at UER watershed did not have any tile drain. Tile flow was also measured along with stream flow. Water samples were collected not only from the stream sections using auto-samplers but also manually from the tile drains. Average baseflow rates per unit lengths of the stream sections at BD and UER sites were 3.5x10-04 and 9.4x10-05m2s-1, respectively. At BD site, for six study periods, the percentages of baseflow and tile flow contributions of NO3-N loads within the stream section were 90 and 10%, respectively. Annual NO3-N contributions by the upstream subwatersheds for BD and UER stream sections were 61,819 and 16,155kg, respectively. Annual NO3-N loss from these two subwatersheds within BD and UER watersheds was 42.9 and 7.0kgha-1, respectively. For the stream section at BD site, baseflow seemed to play a more important role than tile flow in raising the NO3-N concentration level in the stream water. Land use seemed to play a major role in the significant difference in NO3-N concentrations at the two subwatersheds upstream from the project sites. Nitrate-N loadings primarily depended on precipitation, antecedent moisture condition (AMC), fertilizer application time, and evapotranspiration (ET).
Keywords: Water; quality; Nitrate-N; Tile; drains; Baseflow; Hydrology; Tile-drained; watershed (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00030-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:6:p:1021-1030
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().