EconPapers    
Economics at your fingertips  
 

Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation

A.A. Siyal and T.H. Skaggs

Agricultural Water Management, 2009, vol. 96, issue 6, 893-904

Abstract: Sub-surface irrigation with porous clay pipe can be an efficient, water saving method of irrigation for many less developed arid and semi-arid regions. Maximizing the efficiency of clay pipe irrigation requires guidelines and criteria for system design and operation. In this study, experimental and simulated (with HYDRUS (2D/3D)) soil wetting patterns were investigated for sub-surface pipe systems operating at different water pressures. Predictions of the soil water content made with HYDRUS were found to be in good agreement (R2=0.98) with the observed data. Additional simulations with HYDRUS were used to study the effects of various design parameters on soil wetting. Increasing the system pressure increased the size of the wetted zone. The installation depth affects the recommended lateral spacing as well as the amount of evaporative water loss. For a given water application, the potential rate of surface evaporation affected the shape of the wetted region only minimally. Soil texture, due to its connection to soil hydraulic conductivity and water retention, has a larger impact on the wetting geometry. In general, greater horizontal spreading occurs in fine texture soils, or in the case of layered soils, in the finer textured layers.

Keywords: Porous; clay; pipe; Sub-surface; irrigation; Micro-irrigation; Soil; wetting; Hydraulic; conductivity; HYDRUS (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00314-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:6:p:893-904

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:893-904