EconPapers    
Economics at your fingertips  
 

Subsurface drip irrigation of corn in the United States Mid-South

E.D. Vories, P.L. Tacker, S.W. Lancaster and R.E. Glover

Agricultural Water Management, 2009, vol. 96, issue 6, 912-916

Abstract: Although rainfall in the United States Mid-South is sufficient to produce corn (Zea mays L.) without irrigation in most years, timely irrigation has been shown to increase yields. The recent interest in ethanol fuels is expected to lead to increases in US corn production, and subsurface drip irrigation (SDI) is one possible way to increase application efficiency and thereby reduce water use. The objective of this study was to determine the response of SDI-irrigated corn produced in the US Mid-South. Field studies were conducted at the University of Arkansas Northeast Research and Extension Center at Keiser during the 2002-2004 growing seasons. The soil was mixed, with areas of fine sandy loam, loamy sand, and silty clay. SDI tubing was placed under every row at a depth of approximately 30cm. Three irrigation levels were compared, with irrigation replacing 100% and 60% of estimated daily water use and no irrigations. The split plot treatment was hybrid, with three hybrids of different relative maturities. Although the 3-year means indicated significantly lower yields for a nonirrigated treatment, no significant differences were observed among the treatments in 2003 or 2004. A large difference was observed in 2002, the year with the least rainfall during the study period, but no difference was detected between the two irrigated treatments in any year. The treatment with the lower water application had the higher irrigation water use efficiency. Although the results of this study suggested that replacing 60% of the estimated daily evapotranspiration with SDI is sufficient for maximum corn yields, additional observations will be needed to determine whether corn production with SDI is feasible in the region and to develop recommendations for farmers choosing to adopt the method. Improved weather forecasting and crop coefficient functions developed specifically for the region should also contribute to more efficient irrigation management.

Keywords: SDI; Maize; Water; management; Crop; management (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00318-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:6:p:912-916

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:912-916