Using a furrow system for surface drainage under unsteady rain
A. Taky,
J.C. Mailhol and
G. Belaud
Agricultural Water Management, 2009, vol. 96, issue 7, 1128-1136
Abstract:
Water excess during winter limits crop development on heavy clay soil conditions of the Gharb valley (Morocco). The furrow system to eliminate these negative effects is the adopted solution. This article focuses on the development of a water transfer model through a furrow system during unsteady rainfall event to evaluate the runoff volume resulting from a reference rainy event. This model contains a production function associated to a transfer function. The production function is based on the Green-Ampt infiltration equation. The latter has been adapted to account for unsteady rain conditions and rainfall intermittence. The transfer function is based on the kinematic wave model, the explicit solution of which is coupled with the water excess generated by the production function. Simulated runoff in the furrows is collected by a drainage ditch evacuating the flow outside a plot of 1.3ha. The similarity between parameters of a furrow irrigation model and those of the production function is advantageously used for model calibration. The proposed modelling approach shows capabilities to predict water amount and peak discharges evacuated from a plot of around 1ha by a furrow system under unsteady rainfall events. As an application, it is used to evaluate the ability of the surface drainage system to evacuate the excessive volumes of water under typical rainfalls.
Keywords: Runoff; Furrow; system; Unsteady; rainfall; Overland; flow; Kinematic; wave; model (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00059-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:7:p:1128-1136
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().