Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity
Basant L. Maheshwari and
Harsharn Singh Grewal
Agricultural Water Management, 2009, vol. 96, issue 8, 1229-1236
Abstract:
This study examines whether there are any beneficial effects of magnetic treatment of different irrigation water types on water productivity and yield of snow pea, celery and pea plants. Replicated pot experiments involving magnetically treated and non-magnetically treated potable water (tap water), recycled water and saline water (500ppm and 1000ppm NaCl for snow peas; 1500ppm and 3000ppm for celery and peas) were conducted in glasshouse under controlled environmental conditions during April 2007 to December 2008 period at University of Western Sydney, Richmond Campus (Australia). A magnetic treatment device with its magnetic field in the range of 3.5-136mT was used for the magnetic treatment of irrigation water. The analysis of the data collected during the study suggests that the effects of magnetic treatment varied with plant type and the type of irrigation water used, and there were statistically significant increases in plant yield and water productivity (kg of fresh or dry produce per kL of water used). In particular, the magnetic treatment of recycled water and 3000ppm saline water respectively increased celery yield by 12% and 23% and water productivity by 12% and 24%. For snow peas, there were 7.8%, 5.9% and 6.0% increases in pod yield with magnetically treated potable water, recycled water and 1000ppm saline water, respectively. The water productivity of snow peas increased by 12%, 7.5% and 13% respectively for magnetically treated potable water, recycled water and 1000ppm saline water. On the other hand, there was no beneficial effect of magnetically treated irrigation water on the yield and water productivity of peas. There was also non-significant effect of magnetic treatment of water on the total water used by any of the three types of vegetable plants tested in this study. As to soil properties after plant harvest, the use of magnetically treated irrigation water reduced soil pH but increased soil EC and available P in celery and snow pea. Overall, the results indicate some beneficial effect of magnetically treated irrigation water, particularly for saline water and recycled water, on the yield and water productivity of celery and snow pea plants under controlled environmental conditions. While the findings of this glasshouse study are interesting, the potential of the magnetic treatment of irrigation water for crop production needs to be further tested under field conditions to demonstrate clearly its beneficial effects on the yield and water productivity.
Keywords: Magnetic; treatment; Water; productivity; Recycled; water; Salinity; Snow; pea; Celery; Pea; plants (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00090-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:8:p:1229-1236
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().