EconPapers    
Economics at your fingertips  
 

Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models

L.V. Chinh, K. Hiramatsu, M. Harada and M. Mori

Agricultural Water Management, 2009, vol. 96, issue 9, 1332-1338

Abstract: The Chiyoda basin is located in the Saga Prefecture of the Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River, into which excess water in the basin is drained away. This basin has a total area of approximately 1100ha and is a typical flat and low-lying agricultural area. The estimation of the water levels at the gates and along the main drainage canal is a crucial issue that has recently been the subject of much research. At these locations farmers and managers need to control the operation of the irrigation and drainage systems during periods of cultivation. An attempt has been made to apply a feed-forward artificial neural network (FFANN) to model and estimate the water levels in the main drainage canal. The study indicated that the artificial neural network (ANN) could successfully model the complex relationship between rainfall and water levels in this flat and low-lying agricultural area. Input variables and the model structure were selected and optimized by trial and error, and the accuracy of the model was then evaluated by comparing the simulated water levels with the observed ones during an irrigation period in July 2007. The water levels at two locations, located upstream and downstream of a main drainage canal, were investigated by using a time series at intervals of 20, 30, and 60min. At these intervals, rainfall and tide water levels in the Chikugo River were measured, and the backward time-step numbers of the input variables of rainfall and tide water level were searched. For the upstream location, the optimal combination yielding good agreement between the observed and estimated water levels was obtained when the interval of the time series was 60min. The number of backward time-steps of the input variables of rainfall and tide water level were 5 and 4, respectively. In contrast to the downstream location, the optimal combination was obtained for the interval time series of 20min with 4 backward time-steps for both the input variables of rainfall and tide water level. The present study could provide farmers and managers with a useful tool for controlling water distribution in the drainage basin, and reduce the cost of installing water level observation points at many locations in the main drainage canal.

Keywords: Rainfall; Drainage; canal; Upstream; water; level; Downstream; water; level; Tide; water; level; Irrigation; period (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00103-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:96:y:2009:i:9:p:1332-1338

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:96:y:2009:i:9:p:1332-1338