EconPapers    
Economics at your fingertips  
 

Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production

Monireh Faramarzi, Hong Yang, Rainer Schulin and Karim C. Abbaspour

Agricultural Water Management, 2010, vol. 97, issue 11, 1861-1875

Abstract: In most parts of Iran, water scarcity has been intensifying and posing a threat to the sustainability of agricultural production. Wheat is the dominant crop and the largest irrigation water user in Iran; hence, understanding of the crop yield-water relations in wheat across the country is essential for a sustainable production. Based on a previously calibrated hydrologic model, we modeled irrigated and rainfed wheat yield (Y) and consumptive water use (ET) with uncertainty analysis at a subbasin level in Iran. Simulated Y and ET were used to calculate crop water productivity (CWP). The model was then used to analyze the impact of several stated policies to improve the agricultural system in Iran. These included: increasing the quantity of cereal production through more efficient use of land and water resources, improving activities related to soil moisture conservation and retention, and optimizing fertilizer application. Our analysis of the ratio of water use to internal renewable water resources revealed that 23 out of 30 provinces were using more than 40% of their water resources for agriculture. Twelve provinces reached a ratio of 100% and even greater, indicating severe water scarcity and groundwater resource depletion. An analysis of Y-CWP relationship showed that one unit increase in rainfed wheat yield resulted in a lesser additional water requirement than irrigated wheat, leading to a larger improvement in CWP. The inference is that a better water management in rainfed wheat, where yield is currently small, will lead to a larger marginal return in the consumed water. An assessment of improvement in soil available water capacity (AWC) showed that 18 out of 30 provinces are more certain to save water while increasing AWC through proper soil management practices. As wheat self-sufficiency is a desired national objective, we estimated the water requirement of the year 2020 (keeping all factors except population constant) to fulfill the wheat demand. The results showed that 88% of the additional wheat production would need to be produced in the water scarce provinces. Therefore, a strategic planning in the national agricultural production and food trade to ensure sustainable water use is needed. This study lays the basis for a systematic analysis of the potentials for improving regional and national water use efficiency. The methodology used in this research, could be applied to other water scarce countries for policy impact analysis and the adoption of a sustainable agricultural strategy.

Keywords: Yield; calibration; Uncertainty; Analysis; Irrigation; Water; scarcity; SWAT; SUFI-2 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00233-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:97:y:2010:i:11:p:1861-1875

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1861-1875