Simulation of automatic control of an irrigation canal
D. Lozano,
C. Arranja,
M. Rijo and
L. Mateos
Agricultural Water Management, 2010, vol. 97, issue 1, 91-100
Abstract:
Improved water management and efficient investment in the modernization of irrigation schemes are essential measures in many countries to satisfy the increasing demand for water. Automatic control of the main canals is one method for increasing the efficiency and flexibility of irrigation systems. In 2005, one canal in the irrigation scheme 'Sector B-XII del Bajo Guadalquivir' was monitored. This canal is representative of irrigation schemes in Southern Spain; it is divided into four pools and supplies an area of 5154ha. Ultrasonic sensors and pressure transducers were used to record the gate opening and water levels at the upstream and downstream ends of each canal pool. Using the recorded data and the SIC (Simulation of Irrigation Canals) hydraulic model, two canal control options (local upstream control and distant downstream control) were evaluated using a PI (Proportional-Integral) control algorithm. First, the SIC model was calibrated and validated under steady-state conditions. Then the proportional and integral gains of the PI algorithm were calibrated. The controllers were tested using theoretical demand changes (constant outflow followed by a sudden demand increase or decrease) and real demand changes generated on the basis of a spatially distributed crop water balance that included a number of sources of variability (random and not random) in the determination of field irrigation timing and depth. The results obtained show that only the distant downstream controller was able to adjust quickly and automatically the canal dynamics to the varying water demands; it achieved this efficiently and with few spills at the canal tail, even when there were sudden and significant flow variations.
Keywords: Flexibility; of; water; delivery; On-demand; operation; Local; upstream; control; Distant; downstream; control; Proportional-Integral; controller (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00246-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:97:y:2010:i:1:p:91-100
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().