Using AquaCrop to derive deficit irrigation schedules
S. Geerts,
D. Raes and
M. Garcia
Agricultural Water Management, 2010, vol. 98, issue 1, 213-216
Abstract:
Straightforward guidelines for deficit irrigation (DI) can help in increasing crop water productivity in agriculture. To elaborate such guidelines, crop models assist in assessing the conjunctive effect of different environmental stresses on crop yield. We use the AquaCrop model to simulate crop development for long series of historical climate data. Subsequently we carry out a frequency analysis on the simulated intermediate biomass levels at the start of the critical growth stage, during which irrigation will be applied. From the start of the critical growth stage onwards, we simulate dry weather conditions and derive optimal frequencies (time interval of a fixed net application depth) of irrigation to avoid drought stress during the sensitive growth stages and to guarantee maximum water productivity. By summarizing these results in easy readable charts, they become appropriate for policy, extension and farmer level use. We illustrate the procedure to derive DI schedules with an example of quinoa in Bolivia. If applied to other crops and regions, the presented methodology can be an illustrative decision support tool for sustainable agriculture based on DI.
Keywords: Crop; water; productivity; Modeling; Soil; water; balance; Drought; stress; Water; use; efficiency; Supplemental; irrigation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00234-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2010:i:1:p:213-216
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().