An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques
A.H. El Nahry,
R.R. Ali and
A.A. El Baroudy
Agricultural Water Management, 2011, vol. 98, issue 4, 517-531
Abstract:
The current work is aimed to realizing land and water use efficiency and determining the profitability of precision farming economically and environmentally. The studied area is represented by an experimental pivot irrigation field cultivated with maize in Ismailia province, Egypt. Two field practices were carried out during the successive summer growing seasons (2008 and 2009) to study the response of maize plants single hybrid 10 (S.H.10) to traditional and precision farming practices. Traditional farming (TF) as handled by the farm workers were observed and noted carefully. On the other hand precision farming (PF) practices included field scouting, grid soil sampling, variable rate technology and its applications. After applying PF a dramatic change in management zones was noticed and three management zones (of total four) were merged to be more homogenous representing 84.3% of the pivot irrigation field. Under PF Remote Sensing and Geographic Information System techniques have played a vital role in the variable rate applications that were defined due to management zones requirements. Fertilizers were added in variable rates, so that rationalization of fertilizers saved 23.566 tonnes/experimental pivot area. Natural drainage system was improved by designing vertical holes to break down massive soil layers and to leach excessive salts. Crop water requirements were determined in variable rate according to the actual plant requirements using SEBAL model with the aid of FAO Cropwat model. Irrigation schedule of maize was adopted considering soil water retention, depletion, gross and net irrigation saving an amount of water equal to 93,718Â m3 in the pivot irrigation field (153.79Â acre). However costs of applying PF were much higher than TF, the economic profitability (returns-costs) achieved remarkable increase of 29.89% as a result of crop yield increment by 1000, 2100, 800 and 200Â kg/acre in the management zones 1, 2, 3 and 4, respectively. Finally applying adequate amounts of fertilizers beside water control the environmental hazards was reduced to the acceptable limits.
Keywords: Precision; farming; SEBAL; Cropwat; Management; zone; Remote; sensing; and; GIS (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00318-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2011:i:4:p:517-531
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().