Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols
C.C. Truman,
T.L. Potter,
R.C. Nuti,
D.H. Franklin and
D.D. Bosch
Agricultural Water Management, 2011, vol. 98, issue 8, 1189-1196
Abstract:
The highly weathered, low-carbon, intensively cropped, drought-prone Coastal Plain soils of Georgia are susceptible to runoff and soil loss, especially at certain times of the year when soil water contents are elevated. We quantified the effects of antecedent water content (AWC) on runoff (R) and sediment (E) losses from two loamy sands managed under conventional- (CT), strip- (ST), and/or no-till (NT) systems. Two AWC treatments were evaluated: field moist (FM) and pre-wet (PW), created with and without post pesticide application irrigations (~12 mm of water added with the rainfall simulated over 30 min) for incorporation. Treatments (5) evaluated were: CT + FM, CT + PW, ST + FM, ST + PW, and NT + PW. Field plots, each 2-m x -3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a variable rainfall intensity (Iv) pattern for 70 min (site 1) or a constant rainfall intensity (Ic) pattern for 60 min (site 2; Ic = 50.8 mm h-1). Adding ~12 mm of water as herbicide incorporation increased AWCs of the 0-2 (3-9-fold) and 2-15 (23-117%) cm soil depths of PW plots compared to existing field moist soil conditions. Increase in AWC increased R (as much as 60%) and maximum R rates (as much as 62%), and decreased E (at least 59%) and maximum E rates (as much as 2.1-fold) for corresponding tillage treatments. Compared to CT plots, ST and NT plots decreased R (at least 2.6-fold) and maximum R rates (as much as 3-fold), and decreased E (at least 2.7-fold) and maximum E rates (at least 3.2-fold). Runoff curves for pre-wetted CT and ST plots were always higher than corresponding FM curves, whereas E curves for field moist CT and ST plots were always higher than corresponding PW curves. Changes in AWC and tillage affected detachment and transport processes controlling runoff and sediment yields. A more accurate measure of rainfall partitioning and detachment and transport processes affecting R and E losses was obtained when commonly occurring field conditions (increased AWC with irrigation; Iv pattern derived from natural rainfall; commonly used tillage systems) were created and evaluated.
Keywords: Erosion; Infiltration; Strip-tillage; No-tillage; Rainfall; simulation; Soil; water (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377411000515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2011:i:8:p:1189-1196
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().