EconPapers    
Economics at your fingertips  
 

Fast and Frugal heuristics augmented: When machine learning quantifies Bayesian uncertainty

Gregory Gadzinski and Alessio Castello

Journal of Behavioral and Experimental Finance, 2020, vol. 26, issue C

Abstract: Heuristics aim at providing good and fast approximations to complex optimal solutions. They are conceptually simple, implementing them rarely requires high levels of mathematical sophistication or even programming skills. For instance, Fast and Frugal Trees are very simple decision trees for binary classification problems. They are fast and frugal as they rely on a minimum of time, knowledge and computation to make efficient decisions. These advantages come at a cost as well. Their intrinsic nature prevents them from evaluating the accuracy of their estimation. On the opposite, machine learning methods are now widely used to assess predictive Bayesian uncertainty. This article combines the best of the two worlds by introducing a two-step decision making process that combines the simplicity of an heuristic driven tree with a Bayesian estimation of uncertainty. In short, we argue that one should use intuition to form hypotheses, apply statistics to consolidate them (i.e. the Fast and Frugal Tree) and more complex algorithms to estimate their predictive capacities. We apply our methodology to data on loan approval/denial decisions.

Keywords: Behavioral financial decision making; Fast and Frugal Trees; Machine Learning; Bayesian uncertainty; Ensemble method; Neural Networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2214635019302357

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:beexfi:v:26:y:2020:i:c:s2214635019302357

DOI: 10.1016/j.jbef.2020.100293

Access Statistics for this article

Journal of Behavioral and Experimental Finance is currently edited by Michael Dowling and Jürgen Huber

More articles in Journal of Behavioral and Experimental Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:beexfi:v:26:y:2020:i:c:s2214635019302357