Predicting industry sectors from financial statements: An illustration of machine learning in accounting research
Hans van der Heijden
The British Accounting Review, 2022, vol. 54, issue 5
Abstract:
The main aim and contribution of this study is to outline and demonstrate the usefulness of a machine learning approach to address prediction-based research problems in accounting research, and to contrast this approach with a more conventional explanation-based approach familiar to most accounting scholars. To illustrate the approach, the study applies machine learning to predict a firm's industry sector using the firm's publicly available financial statement data. The results show that an algorithm can predict an industry sector with just this data to a high degree of accuracy, especially if a non-linear classifier is used instead of a linear classifier. Additionally, the algorithms were able to carry out an industry-firm pairing exercise taken from introductory accounting text books and MBA cases, with predicted answers showing a high degree of accuracy in carrying out this exercise. The study shows how machine learning approaches and algorithms can be valuable to a range of accounting domains where prediction rather than explanation of the dependent variable is the main area of concern.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0890838922000257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:bracre:v:54:y:2022:i:5:s0890838922000257
DOI: 10.1016/j.bar.2022.101096
Access Statistics for this article
The British Accounting Review is currently edited by Nathan Lael Joseph and Alan Lowe
More articles in The British Accounting Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().