Managing risk with a realized copula parameter
Matthias Fengler and
Ostap Okhrin
Computational Statistics & Data Analysis, 2016, vol. 100, issue C, 131-152
Abstract:
A dynamic copula model is introduced, in which the copula structure is inferred from the realized covariance matrix estimated from within-day high-frequency data. The estimation is carried out in a method-of-moments fashion using Hoeffding’s lemma. Applying this procedure day by day gives rise to a time series of daily copula parameters which can be approximated by an autoregressive time series model. This allows one to capture time-varying dependence. In an application to portfolio risk-management, it is found that this time-varying realized copula model exhibits very good forecasting properties for the one-day ahead value at risk.
Keywords: Copula; Multivariate dependence; Realized covariance; Realized variance; Value at risk (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002151
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:100:y:2016:i:c:p:131-152
DOI: 10.1016/j.csda.2014.07.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().