Neighbourhood GMM estimation of dynamic panel data models
Vasilis Sarafidis
Computational Statistics & Data Analysis, 2016, vol. 100, issue C, 526-544
Abstract:
A new approach is developed for estimation of short dynamic panel data models with spatially correlated errors. The method employs an additional set of moment conditions that become available for each i—specifically, instruments with respect to the individual(s) which unit i is spatially correlated with. These moment conditions are non-redundant and remain informative even if the data generating process is close to a unit root one. The proposed GMM estimator is consistent and asymptotically normally distributed. An extensive Monte Carlo study also builds a GMM estimator that combines spatial and standard instruments. This estimator appears to perform very well under a wide range of parametrisations in terms of both bias and root mean square error. The proposed method is illustrated using crime data based on a panel of 153 local government areas in NSW, spanning a period of 5 years.
Keywords: Dynamic panel data; Spatial dependence; Generalised Method of Moments (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002984
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:100:y:2016:i:c:p:526-544
DOI: 10.1016/j.csda.2015.11.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().