Moment Ratio estimation of autoregressive/unit root parameters and autocorrelation-consistent standard errors
J. Huston McCulloch
Computational Statistics & Data Analysis, 2016, vol. 100, issue C, 712-733
Abstract:
A Moment Ratio estimator is proposed for an AR(p) model of the errors in an OLS regression, that provides standard errors with far less median bias and confidence intervals with far better coverage than conventional alternatives. A unit root, and therefore the absence of cointegration, does not necessarily mean that a correlation between the variables is spurious. The estimator is applied to a quadratic trend model of real GDP. The rate of change of GDP growth is negative with finite standard error but is insignificant. The “output gap,” often used as a guide to monetary policy, has an infinite standard error and is therefore a statistical illusion.
Keywords: Method of Moments; Autoregressive processes; Unit root processes; Regression errors; Consistent covariance matrix; Real GDP growth (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001607
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:100:y:2016:i:c:p:712-733
DOI: 10.1016/j.csda.2015.07.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().