EconPapers    
Economics at your fingertips  
 

A Gini-based unit root test

Amit Shelef

Computational Statistics & Data Analysis, 2016, vol. 100, issue C, 763-772

Abstract: A Gini-based statistical test for a unit root is suggested. This test is based on the well-known Dickey–Fuller test, where the ordinary least squares (OLS) regression is replaced by the semi-parametric Gini regression in modeling the AR process. A residual-based bootstrap is used to find critical values. The Gini methodology is a rank-based methodology that takes into account both the variate values and the ranks. Therefore, it provides robust estimators that are rank-based, while avoiding loss of information. Furthermore, the Gini methodology relies on first-order moment assumptions, which validates its use for a wide range of distributions. Simulation results validate the Gini-based test and indicate its superiority in some design settings in comparison to other available procedures. The Gini-based test opens the door for further developments such as a Gini-based cointegration test.

Keywords: Time series analysis; Unit root tests; Gini regression; Bootstrap (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002448
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:100:y:2016:i:c:p:763-772

DOI: 10.1016/j.csda.2014.08.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:763-772