A Bayesian method for simultaneous registration and clustering of functional observations
Zizhen Wu and
David B. Hitchcock
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 121-136
Abstract:
We develop a Bayesian method that simultaneously registers and clusters functional data of interest. Unlike other existing methods, which often assume a simple translation in the time domain, our method uses a discrete approximation generated from the family of Dirichlet distributions to allow warping functions of great flexibility. Under this Bayesian framework, a MCMC algorithm is proposed for posterior sampling. We demonstrate this method via simulation studies and applications to growth curve data and cell cycle regulated yeast genes.
Keywords: Functional data; Time warping; Curve registration (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300263
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:121-136
DOI: 10.1016/j.csda.2016.02.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().