Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data
Lixing Zhou,
Yoshio Takane and
Heungsun Hwang
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 93-109
Abstract:
Effective connectivity in functional neuroimaging studies is defined as the time dependent causal influence that a certain brain region of interest (ROI) exerts on another. A new method of structural equation modeling (SEM) is proposed for analyzing common patterns among multiple subjects’ effective connectivity. The proposed method, called Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) incorporates contemporaneous and lagged effects between ROIs, direct and modulating effects of stimuli, as well as interaction effects among ROIs. An alternating least squares (ALS) algorithm is developed for estimating parameters. Synthetic and real data are analyzed to demonstrate the feasibility and usefulness of the proposed method.
Keywords: Dynamic generalized structured component analysis (Dynamic GSCA); Structural equation modeling (SEM); Longitudinal and time series data; Alternating least squares (ALS) algorithm; fMRI (functional magnetic resonance imaging) data; Brain connectivity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300433
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:93-109
DOI: 10.1016/j.csda.2016.03.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().