On a dispersion model with Pearson residual responses
K.Y.K. Wu and
W.K. Li
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 17-27
Abstract:
Dispersion regression is often used to predict the expected deviance in a generalised linear model. Using the individual deviance residual as the response variable in that model is considered the standard approach in dispersion modelling. In this paper, we investigate an alternative approach by fitting the dispersion model on the individual Pearson residual responses, which is more straightforward than and has superior interpretability to the deviance approach because no transformation on the observed and expected responses via the likelihood function is required. However, the mean and dispersion parameters are non-orthogonal if the model parameter estimates are obtained by maximising the pseudo-likelihood function. Consequently, the mean and dispersion regression parameters must be estimated simultaneously, and the estimation algorithm is multidimensional and hence more complex. As the asymptotic behaviour of both the deviance and Pearson residuals suggests that they should converge, we expect Pearson residual dispersion models to perform in the same way as or even better than deviance residual models.
Keywords: Pearson residual; Pseudo-likelihood function; Dispersion model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300949
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:17-27
DOI: 10.1016/j.csda.2016.04.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().