Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach
Xuehu Zhu,
Fei Chen,
Xu Guo () and
Lixing Zhu
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 263-283
Abstract:
Heteroscedasticity testing is of importance in regression analysis. Existing local smoothing tests suffer severely from curse of dimensionality even when the number of covariates is moderate because of use of nonparametric estimation. A dimension reduction-based model adaptive test is proposed which behaves like a local smoothing test as if the number of covariates was equal to the number of their linear combinations in the mean regression function, in particular, equal to 1 when the mean function contains a single index. The test statistic is asymptotically normal under the null hypothesis such that critical values are easily determined. The finite sample performances of the test are examined by simulations and a real data analysis.
Keywords: Heteroscedasticity testing; Model-adaption; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300858
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:263-283
DOI: 10.1016/j.csda.2016.04.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().