A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes
Heping He and
Thomas A. Severini
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 316-329
Abstract:
Consider a semiparametric regression model in which the mean function depends on a finite-dimensional regression parameter as the parameter of interest and an unknown function as a nuisance parameter. A method of inference in such models is proposed, using a type of integrated likelihood in which the unknown function is eliminated by averaging with respect to a given distribution, which we take to be a Gaussian process with a covariance function chosen to reflect the assumptions about the function. This approach is easily implemented and can be applied to a wide range of models using the same basic methodology. The consistency and asymptotic normality of the estimator of the parameter of interest are established under mild conditions. The proposed method is illustrated on several examples.
Keywords: Semiparametric model; Gaussian process regression; Generalized least squares; Restricted maximum likelihood (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301128
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:316-329
DOI: 10.1016/j.csda.2016.05.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().