Efficient computation of the quasi likelihood function for discretely observed diffusion processes
Lars Josef Höök and
Erik Lindström
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 426-437
Abstract:
An efficient numerical method for nearly simultaneous computation of all conditional moments needed for quasi maximum likelihood estimation of parameters in discretely observed stochastic differential equations is presented. The method is not restricted to any particular dynamics of the stochastic differential equation and is virtually insensitive to the sampling interval. The key contribution is that computational complexity is sublinear in terms of expensive operations in the number of observations as all moments can be computed offline in a single operation. Simulations show that the bias of the method is small compared to the random error in the estimates, and to the bias of comparable methods. Furthermore the computational cost is comparable (actually faster for moderate and large data sets) to the simple, but in some applications badly biased, the Euler–Maruyama approximation.
Keywords: Quasi likelihood; Diffusion process; Conditional moment; Maximum likelihood; Stochastic differential equation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301165
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:426-437
DOI: 10.1016/j.csda.2016.05.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().