Bayesian estimation of the tail index of a heavy tailed distribution under random censoring
Abdelkader Ameraoui,
Kamal Boukhetala and
Jean-François Dupuy
Computational Statistics & Data Analysis, 2016, vol. 104, issue C, 148-168
Abstract:
Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index. Convergence of the posterior distribution of the tail index to a Gaussian distribution is established. Finite-sample properties of the proposed estimators are investigated via simulations. Tail index estimation requires selecting an appropriate threshold for constructing relative excesses. A Monte Carlo procedure is proposed for tackling this issue. Finally, the proposed estimators are illustrated on a medical dataset.
Keywords: Extreme value modeling; Random censoring; Maximum a posteriori estimator; Mean posterior estimator; Asymptotic normality of posterior; Simulations (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301463
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:104:y:2016:i:c:p:148-168
DOI: 10.1016/j.csda.2016.06.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().