Using the Bayesian Shtarkov solution for predictions
Tri Le and
Bertrand Clarke
Computational Statistics & Data Analysis, 2016, vol. 104, issue C, 183-196
Abstract:
The Bayes Shtarkov predictor can be defined and used for a variety of data sets that are exceedingly hard if not impossible to model in any detailed fashion. Indeed, this is the setting in which the derivation of the Shtarkov solution is most compelling. The computations show that anytime the numerical approximation to the Shtarkov solution is ‘reasonable’, it is better in terms of predictive error than a variety of other general predictive procedures. These include two forms of additive model as well as bagging or stacking with support vector machines, Nadaraya–Watson estimators, or draws from a Gaussian Process Prior.
Keywords: Bayes; Prequential; Model average; Stacking; Shtarkov predictor; Bagging (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301554
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:104:y:2016:i:c:p:183-196
DOI: 10.1016/j.csda.2016.06.018
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().