EconPapers    
Economics at your fingertips  
 

Modeling nonstationary covariance function with convolution on sphere

Yang Li and Zhengyuan Zhu

Computational Statistics & Data Analysis, 2016, vol. 104, issue C, 233-246

Abstract: The wide use of satellite-based instruments provides measurements in climatology on a global scale, which often have nonstationary covariance structure. The issue of modeling a spatial random fields on sphere which is stationary across longitudes is addressed with a kernel convolution approach. The observed random field is generated by convolving a latent uncorrelated random field with a class of Matérn type kernel functions. By allowing the parameters in the kernel functions to vary with locations, it is possible to generate a flexible class of covariance functions and capture the nonstationary properties. Since the corresponding covariance functions generally do not have a closed form, numerical evaluations are necessary and a pre-computation table is used to speed up the computation. For regular grid data on sphere, the circulant block property of the covariance matrix enables us to use Fast Fourier Transform (FFT) to get its determinant and inverse matrix efficiently. The proposed approach is applied to the Total Ozone Mapping Spectrometer (TOMS) data for illustration.

Keywords: Spatial statistics; Kernel convolution; Axial symmetry; Nonstationary (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301566
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:104:y:2016:i:c:p:233-246

DOI: 10.1016/j.csda.2016.07.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:104:y:2016:i:c:p:233-246