Confidence intervals through sequential Monte Carlo
Ivair R. Silva
Computational Statistics & Data Analysis, 2017, vol. 105, issue C, 112-124
Abstract:
Usually, confidence intervals are built through inversion of a hypothesis test. When the analytical shape of the test statistic distribution is unknown, Monte Carlo simulation can be used to construct the interval. In this direction, a sequential Monte Carlo method for interval estimation is introduced. The method produces intervals with guaranteed confidence coefficients. Because in practice one always needs to establish a truncation on the number of simulations, a simple rule of thumb is offered for choosing the number of simulations as a function of desired upper bounds for the coverage probability. As a novelty in the literature, the sequential Monte Carlo method presents equivalence with the conventional Monte Carlo test. In terms of performance, the superiority of the proposed method is illustrated for two different problems, estimation of gamma distribution means, and estimation of population sizes based on mark-recapture sampling. An example of application for real data is offered for relative risk estimation following the circular spatial scan test.
Keywords: Confidence coefficient; Coverage probability; Hypothesis testing; Scan test (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301815
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:105:y:2017:i:c:p:112-124
DOI: 10.1016/j.csda.2016.07.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().