EconPapers    
Economics at your fingertips  
 

Approximate maximum likelihood estimation using data-cloning ABC

Umberto Picchini and Rachele Anderson

Computational Statistics & Data Analysis, 2017, vol. 105, issue C, 166-183

Abstract: A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods is models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called “data cloning” for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.

Keywords: Approximate Bayesian computation; Intractable likelihood; MCMC; State-space model; Stochastic differential equation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301876
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:105:y:2017:i:c:p:166-183

DOI: 10.1016/j.csda.2016.08.006

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:166-183