Data-driven algorithms for dimension reduction in causal inference
Emma Persson,
Jenny Häggström,
Ingeborg Waernbaum and
Xavier de Luna
Computational Statistics & Data Analysis, 2017, vol. 105, issue C, 280-292
Abstract:
In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest. In order to identify a causal effect, such studies often rely on the unconfoundedness assumption, i.e., that all confounding variables are observed. The choice of covariates to control for, which is primarily based on subject matter knowledge, may result in a large covariate vector in the attempt to ensure that unconfoundedness holds. However, including redundant covariates can affect bias and efficiency of nonparametric causal effect estimators, e.g., due to the curse of dimensionality. Data-driven algorithms for the selection of sufficient covariate subsets are investigated. Under the assumption of unconfoundedness the algorithms search for minimal subsets of the covariate vector. Based, e.g., on the framework of sufficient dimension reduction or kernel smoothing, the algorithms perform a backward elimination procedure assessing the significance of each covariate. Their performance is evaluated in simulations and an application using data from the Swedish Childhood Diabetes Register is also presented.
Keywords: Covariate selection; Marginal co-ordinate hypothesis test; Matching; Kernel smoothing; Type 1 diabetes mellitus (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302018
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:105:y:2017:i:c:p:280-292
DOI: 10.1016/j.csda.2016.08.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().