A fast algorithm for two-dimensional Kolmogorov–Smirnov two sample tests
Yuanhui Xiao
Computational Statistics & Data Analysis, 2017, vol. 105, issue C, 53-58
Abstract:
By using the brute force algorithm, the application of the two-dimensional two-sample Kolmogorov–Smirnov test can be prohibitively computationally expensive. Thus a fast algorithm for computing the two-sample Kolmogorov–Smirnov test statistic is proposed to alleviate this problem. The newly proposed algorithm is O(n) times more efficient than the brute force algorithm, where n is the sum of the two sample sizes. The proposed algorithm is parallel and can be generalized to higher dimensional spaces.
Keywords: Kolmogorov–Smirnov test; Brute force algorithm (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301785
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:105:y:2017:i:c:p:53-58
DOI: 10.1016/j.csda.2016.07.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().