Estimating a non-homogeneous Gompertz process with jumps as model of tumor dynamics
Virginia Giorno,
Patricia Román-Román,
Serena Spina and
Francisco Torres-Ruiz
Computational Statistics & Data Analysis, 2017, vol. 107, issue C, 18-31
Abstract:
A non-homogeneous stochastic model based on a Gompertz-type diffusion process with jumps is proposed to describe the evolution of a solid tumor subject to an intermittent therapeutic program. Each therapeutic application, represented by a jump in the process, instantly reduces the tumor size to a fixed value and, simultaneously, increases the growth rate of the model to represent the toxicity of the therapy. This effect is described by introducing a time-dependent function in the drift of the process. The resulting model is a combination of several non-homogeneous diffusion processes characterized by different drifts, whose transition probability density function and main characteristics are studied. The study of the model is performed by distinguishing whether the therapeutic instances are fixed in advance or guided by a strategy based on the mean of the first-passage-time through a control threshold. Simulation studies are carried out for different choices of the parameters and time-dependent functions involved.
Keywords: Non-homogeneous Gompertz diffusion process; Therapeutic application; Intermittent therapy; First-passage-time; Inference (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302328
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:107:y:2017:i:c:p:18-31
DOI: 10.1016/j.csda.2016.10.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().