EconPapers    
Economics at your fingertips  
 

Deriving optimal data-analytic regimes from benchmarking studies

Lisa L. Doove, Tom F. Wilderjans, Antonio Calcagnì and Iven Van Mechelen

Computational Statistics & Data Analysis, 2017, vol. 107, issue C, 81-91

Abstract: In benchmarking studies with simulated data sets in which two or more statistical methods are compared, over and above the search of a universally winning method, one may investigate how the winning method may vary over patterns of characteristics of the data or the data-generating mechanism. Interestingly, this problem bears strong formal similarities to the problem of looking for optimal treatment regimes in biostatistics when two or more treatment alternatives are available for the same medical problem or disease. It is outlined how optimal data-analytic regimes, that is to say, rules for optimally calling in statistical methods, can be derived from benchmarking studies with simulated data by means of supervised classification methods (e.g., classification trees). The approach is illustrated by means of analyses of data from a benchmarking study to compare two different algorithms for the estimation of a two-mode additive clustering model.

Keywords: Additive clustering; Benchmarking; Classification trees; Comparison of methods; Data-analytic regimes; Supervised learning (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302432
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:107:y:2017:i:c:p:81-91

DOI: 10.1016/j.csda.2016.10.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:107:y:2017:i:c:p:81-91