EconPapers    
Economics at your fingertips  
 

Tracking concept drift using a constrained penalized regression combiner

Li-Yu Wang, Cheolwoo Park, Kyupil Yeon and Hosik Choi

Computational Statistics & Data Analysis, 2017, vol. 108, issue C, 52-69

Abstract: The objective of this work is to develop a predictive model when data batches are collected in a sequential manner. With streaming data, information is constantly being updated and a major statistical challenge for these types of data is that the underlying distribution and the true input–output dependency might change over time, a phenomenon known as concept drift. The concept drift phenomenon makes the learning process complicated because a predictive model constructed on the past data is no longer consistent with new examples. In order to effectively track concept drift, we propose model-combining methods using constrained and penalized regression that possesses a grouping property. The new learning methods enable us to select data batches as a group that are relevant to the current one, reduce the effects of irrelevant batches, and adaptively reflect the degree of concept drift emerging in data streams. We demonstrate the finite sample performance of the proposed method using simulated and real examples. The analytical and empirical results indicate that the proposed methods can effectively adapt to various types of concept drift.

Keywords: Ensemble methods; Clustering; Streaming data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302663
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:108:y:2017:i:c:p:52-69

DOI: 10.1016/j.csda.2016.11.002

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:52-69